On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation

نویسندگان

  • Saïd Moussaoui
  • Hafrun Hauksdóttir
  • Frédéric Schmidt
  • Christian Jutten
  • Jocelyn Chanussot
  • David Brie
  • Sylvain Douté
  • Jon Atli Benediktsson
چکیده

The surface of Mars is currently being imaged with an unprecedented combination of spectral and spatial resolution. This high resolution, and its spectral range, give the ability to pinpoint chemical species on the surface and the atmosphere of Mars moreaccurately than before. The subject of this paper is to present a method to extract informations on these chemicals from hyperspectral images. A first approach, based on Independent Component Analysis (ICA) [1], is able to extract artifacts and locations of CO2 and H2O ices. However, the main independence assumption and some basic properties (like the positivity of images and spectra) being unverified, the reliability of all the independent components (ICs) is weak. For improving the component extraction and consequently the endmember classification, a combination of spatial ICA with spectral Bayesian Positive Source Separation (BPSS) [2] is proposed. To reduce the computational burden, the basic idea is to use spatial ICA yielding a rough classification of pixels, which allows selection of small, but relevant, number of pixels and then BPSS is applied for the estimation of the source spectra using the spectral mixtures provided by this reduced set of pixels. Finally, the abundances of the components is assessed on the whole pixels of the images. Results of this approach are shown and evaluated by comparison with available reference spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

Distributed source separation algorithms for hyperspectral image processing

This paper describes a new algorithm for feature extraction on hyperspectral images based on blind source separation (BSS) and distributed processing. I use Independent Component Analysis (ICA), a particular case of BSS, where, given a linear mixture of statistical independent sources, the goal is to recover these components by producing the unmixing matrix. In the multispectral/hyperspectral i...

متن کامل

Independent Component Analysis as a tool for the dimensionality reduction and the representation of hyperspectral images

Independent Component Analysis (ICA) is a multivariate data analysis process largely sudied these last years in the signal processing community for blind source separation. This paper proposes to show the interest of ICA as a tool for unsupervised analysis of hyperspectral images. The commonly used Principal Component Analysis (PCA) is the mean square optimal projection for gaussian data leadin...

متن کامل

Single-Channel Mixture Decomposition Using Bayesian Harmonic Models

We consider the source separation problem for single-channel music signals. After a brief review of existing methods, we focus on decomposing a mixture into components made of harmonic sinusoidal partials. We address this problem in the Bayesian framework by building a probabilistic model of the mixture combining generic priors for harmonicity, spectral envelope, note duration and continuity. E...

متن کامل

Bayesian source separation: beyond PCA and ICA

Blind source separation (BSS) has become one of the major signal and image processing area in many applications. Principal component analysis (PCA) and Independent component analysis (ICA) have become two main classical approaches for this problem. However, these two approaches have their limits which are mainly, the assumptions that the data are temporally iid and that the model is exact (no n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008